National Weather Service observers reported 80 inches in the Buffalo suburbs of Hamburg and Orchard Park, home to the NFL's Buffalo Bills, and 74 inches (188 centimeters) in Natural Bridge, a hamlet near Watertown off the eastern end of Lake Ontario.
The storm forced the Bills to move Sunday's game against the Cleveland Browns to Detroit.
[Ads /]
Here are updated lake effect snow totals as of 2 pm Monday:
W. Hamburg NY 81.2"
Orchard Park NY 80"
Hamburg NY 77.3"
Athol Springs NY 76"
Blasdell 76"
Natural Bridge NY 74"
Elma Center 67"
Watertown NY 61"
Fort Drum NY 54"
East Aurora 51.3"
West Seneca NY 49"
[Ads /]
Lancaster 42"
Copenhagen NY 40"
Buffalo Airport NY 36.6"
Star Lake NY 35"
It's hard for most people to imagine 6 feet of snow in one storm, like the Buffalo area saw over the weekend, but such extreme snowfall events occasionally happen along the eastern edges of the Great Lakes.
The phenomenon is called "lake-effect snow," and the lakes play a crucial role.
It starts with cold, dry air from Canada. As the bitter cold air sweeps across the relatively warmer Great Lakes, it sucks up more and more moisture that falls as snow.
Michael A. Rawlins, a climate scientist at UMass Amherst, writes lake-effect snow is strongly influenced by the differences between the amount of heat and moisture at the lake surface and in the air a few thousand feet above it.
A big contrast creates conditions that help to suck water up from the lake, and thus more snowfall. A difference of 25 degrees Fahrenheit (14 Celsius) or more creates an environment that can fuel heavy snows. This often happens in late fall, when lake water is still warm from summer and cold air starts sweeping down from Canada. More moderate lake-effect snows occur every fall under less extreme thermal contrasts.
[Ads /]
The wind's path over the lakes is important. The farther cold air travels over the lake surface, the more moisture is evaporated from the lake. A long "fetch" - the distance over water - often results in more lake-effect snow than a shorter one.
Imagine a wind out of the west that is perfectly aligned so it blows over the entire 241-mile length of Lake Erie. That's close to what Buffalo was experiencing during the storm that started Nov. 17, 2022.
Once the snow reaches land, elevation contributes an additional effect. Land that slopes up from the lake increases lift in the atmosphere, enhancing snowfall rates. This mechanism is termed "orographic effect." The Tug Hill plateau, located between Lake Ontario and the Adirondacks in western New York, is well known for its impressive snowfall totals.
In a typical year, annual snowfall in the "lee," or downwind, of the Great Lakes approaches 200 inches in some places.
Residents in places like Buffalo are keenly aware of the phenomenon. In 2014, some parts of the region received upwards of 6 feet of snowfall during an epic lake-effect event Nov. 17-19. The weight of the snow collapsed hundreds of roofs and led to over a dozen deaths.
Lake-effect snowfall in the Buffalo area is typically confined to a narrow region where the wind is coming straight off the lake. Drivers on Interstate 90 often go from sunny skies to a blizzard and back to sunny skies over a distance of 30 to 40 miles.
(Part of this article is republished from The Conversation under a Creative Commons license. Read the original article here: https://theconversation.com/6-feet-of-snow-in-buffalo-what-causes-lake-effect-storms-like-this-194953).
----------
* Get the AccuWeather App
* More AccuWeather
* Follow us on YouTube
* More local news
* Sign up for free newsletters
* Download the abc7NY app for breaking news alerts Submit a News Tip